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1. Igtrgdhction
};’
The polarizabilities of ionic states of atoms are quantities

of importance in the determination of long range forces between
atoms where either excited states are present which are ionic in
character or which exhibit a large degree of charge transfer.
The electric dipole polarizability represents the major interaction
of a static electric field with an atom or ion. A considerable
number of methods have been proposed and applied to the calculation
of atomic polarizabilities. These range from the solution of the
perturbation equations describing the influence of the field on
the atoms to very complete variational methods with large numbers
of configurations.\§\
The perturbafioh\equations arising when atomic exchange
effects are neglected have been solved by variational techniques
for small atoms by Kirkwood, Buckingham and others.2 Dalgarno
and Parkinson3 achieved moderate accuracy for first row atoms by

solving for the first order perturbed orbitals in the presence

of exchange. More recently calculations of atomic polarizabilities

4-7

have been performed using the coupled Hartree-Fock, (CHF), method, &

8-10 th

the coupled Hartree-Fock perturbation, (CHFP), method, e

double perturbation theory,11-13 and the many-body perturbation

theory.14-16 In these techniques the Hartree or Hartree-Fock wave
function is used as a zeroth-order approximation from which the
first-order perturbed function for the atom in the field is

obtained.3 In the CHF method the HF equations for the atom are

variationally solved in the presence of a finite field, 1In the
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CHFP method the polarizability is expressed as a function of the

change in the second order energy of the atom,3 while in the CHF

method the variationally determined wave function for the system

in the presence of the field is used to determine the induced

dipole moment as a function of the field. The polarizability may

then be expressed as the limit of the ratio of the induced dipole

moment to the field as the field goes to zero. If sufficiently

accurate wave functions are used the CHF and CHFP methods are

equivalent.

17,18 the CHF method was

In previous work by this group
applied to neutral atoms of the first row. The method was
applied with and without the inclusion of electron correlation.
When electron correlation was included via the coupled multi-
configurational self-consistent field, (CMCSCF), method, which is ?‘
a straightforward extension of the CHF method it was found that g
correlation effects account for less than 10% of the polarizability.17‘19
Further investigations regarding the basis set via including more
or less flexibility showed that extensions of basis set size
affected the polarizabilities by less than 52.18

In the present work a simple ad hoc scheme for choosing

basis sets of ions and atoms was sought which when used with a

CHF calculation, without the inclusion of correlation effects,
would give polarizabilities for ions to 10-20% accuracy. The
accuracy will be poorest for particular atomic states where
correlation effects are substantia1.20

In addition to the work on the polarizabilities, we have

begun to prepare the recent work on N2 for publication. The
5

abstract for the paper "The

Hu-528+ Transition in Nz" is included.




. where h = =%

II. Review of the Method

In the previous work of our group by Billingsley, Krauss and

17,18

Stevens a CHF method was used in which the atom was subjected

to static field due to a unit charge at a relatively large distance
10-20 a.u. from the atom. The wave function in the presence of

the charge was computed variationally. From the dipole moment
induced by the charge the polarizability was determined. As the
field is not uniform the dipole is induced not by the field alone
but also by gradients and higher derivatives of the field.21 In
the present work, in order to avoid any ambiguities introduced by
the nonuniformity of the field the technique of Cohen and Roothaan

4,5

was applied. >~ 1In their application of the CHF technique the

atom is subjected to a uniform field, ?. The total Hamiltonian

for the system is:

H = +Fnh 1)

H

i -0

->

N §'I1
gui F

ion. The field used is directed along the z-axis of the system.

and Eo is the Hamiltonian for the unperturbed

This destroys the spherical symmetry bringing the atom to va
symmetry. For the lé state of F this produces a 12+ state. It
is for this state £hat the polarizability is determined. The
wave function can be writtean:

RIS AR A MU @
where F = lf[, wo is the unperturbed HF wave function for the

N-electron ion. If wo were the exact wave function of the

unperturbed system then




(H-E )V =0 3)
and *1 is the solution of

(Ho-Eo)wl + hwo =0 4)
In such a perturbation approach the static electric dipole
polarizability becomes:

a= —2<¢o|h|wl> (5)
In the present CHF method the wave function for the system is
determined for particular values of the field along the z-axis
and one can calculate the dipole moment induced by the field:

u(F) = <y|n]y> (6)
The polarizability is then found by the classical definition:

a = lim[u(F)/F] @

Fro
when higher terms are included then the induced moment may be
written for the atom or ion as:
u(F) = of +'% yF3+ 4o (8)

where y is known as the static electric dipole hyperpolarizability.

A second method of determining the polarizability is from the change

in the energy cf the system due to the field. The energy may be
written:
EF) = <y|H + Fuly> Q!
2
= <y |> + Fo{2<y [n|w >+<y, (1 [, >2<y [H [4,>}
4
2F {<w°lh|w3>+<wllhlw2>+<wllnolzp3>
+ 5<v, |0 [v, <y |8_|4,>)
2 "2V o'"2 o' o'
Terms proportional to odd powers of F are absent due to parity
considerations. Thus by using the relationship for the exact

first-order wave function (4) in the second term of (9), and




—h
and omitting the probably small term <w°|H°|¢2>, one obtains:

AE(F) = EF)-E(F=0)

= F2<y_|n]y, >+ s
which when coupled with (5) gives
a(F) = ~28E(F)/F> an
thus:
o = lim{-24E(F)/F?} : (12)

F->0

In the present work gSth eqs. (12) and (7) were applied. It was
found that these two different definitions of « do not give
precisely the same result. This is basically due to the fact that
the wave functions wo’ wl used in the calculation are not exact as
is required for the two definitions to be equivalent. They have
been shown also to be equivalent for HF wave functions by Cohens’22
with the further proviso that Brillouins' theorem holds for 1
Insofar as the wave functions, wo’ used in this work are not exact
solutions to the Hartree-Fock equations nor does Brillouins" theorem
hold once spherical symmetry is broken, it is not surprising that
the equivalence between the two definitions is found not to hold
exactly.

In addition to the polarizability, the hyperpolarizability
may be determined by fitting the induced moment (8) or from the
initial slope of u(F)/F. 1In a similar manner to (5) the hyper-

polarizability can be written by omitting probably small terms:

y = 12{<y [h]y,> + <y_|n[y >} (13)




III. Computational Methods

The calculations reported herein were performed with the
BISON-MC system of programs of Wahl, Das, et al.23 The BISON-MC
programs determine variationally the wave function which is
expressed as a linear combination of Slater determinants. In the
present case a single determinant was used as correlation effects
were ignored. The atomic orbitals of the Slater determiﬁant are
in turn expressed as linear combinations of atomic centered Slater
type orbitals, STO's. The wave functions were generated using
the Hamiltonian (1) with fields varying from 0.0020 to 0.0060 a.u.
The calculations were performed in va symmetry. Calculations
with the field set to zero were done. These gave slightly lower
total energies than the calculations done in spherical symmetry.
In the present case of a 1S atom this lowering was quite small.
This is in contrast to atomic calculations done in va symmetry
where the atom was in a degenerate state17 where larger energy
lowerings occur when the spherical symmetry is broken.

In the present CHF method the polarizability is calculated
using a tasis set for the atom consisting of two parts. The
first part is the Hartree-Fock basis for the atom. The Hartree-
Fock basis set of Clementi for F—(ls) was used. The second part
of the basis set consists of the polarization functions. Sitter
and Hurst have reported rules for choosing the principal quantum
number and spherical harmonic portions of the polarization orbitals.7
There remains the choice of the exponents of these polarization

functions. They may be chosen by a method described by Billingsley
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and Krauss17 in which the functional:

D[S u> + 2[R o> a4)

(1

is the Hartree-Fock orbital and ui

L e
(o)

is minimized. Here ui is

the polarizational orbital. 1

=0 1 2
Hi ) V o+ V (r )

(15)

> >
h= % h;h =Fr/F

and eio is the orbital energy of the i-th orbital. Though this

method has a firm theoretical base it is difficult to apply as

the potential V, is a two electron potential; hence Billingsley

i

and Krauss simplified by using an effective potential:

n*(n*vl) ci(o)
Vi(ri) = 7 = (16)
I‘i i

due to Slater and Zener.24 Still in order to apply their method of

choosing exponents for the polarization functions a further simpli-

(o)

" fication was made. They chose to represent ug and uil) by single

Slater basis functionms.

In the present work a similar although completely ad hoc
method was used to cﬁoose polarization functions. The integral
ofV IRy s>
was maximized, and uio) and uél) were represented by single Slater
orbitals. This gave rise to a set of rules to be used in combination
with those of Sitter and Hurst.7 Thus when basis functions are to
be chosen to allow for polarization of a Hartree-Fock orbital

(0) (;(0)

s ;) choose polarization

whose most significant function is Xa




L e

functions Xi%i.(g(l):;) by the rules:
1S(C(°)) polarize with 2p(;(1) = (°)y
and 3p(;(1) = 7;(°)/5)

ZS(C(O)) polarize with Zp(g(l) = 5§(°)/7)

and 3pd) -

)y
and 4pc®) = 9c(07)
ZP(C(O)) polarize with ls(;(l) = 3;(0)/7)

and 23(;(1) - 5C(0)/7)

and 35 = )
and 4s(zP = 91 /7)
and 3d(c(1) = ;(0)
and 4ac ) = 9(/7)
Should uio) have more than one significant basis function then
choose polarization functions for each of them. Omit any
polarization functions which strongly overlap the space of
functions used to describe wo to prevent over completeness of
the basis set.

In using the Clementi Hartree~Fock basis sets for an atomz6
it frequently occurs that there are three or more functions which
have large atomic orbital coefficients. In such a case it is
necessary to pick the polarization functions using the above rules,
but based on the exponents of a smaller optimized atomic basis set.
This is easily done (even when the exponents of the smaller basis
set are not known but the exponents of a very small basis set are
known) by an extrapolation technique used originally by Hornback25

with gaussians. The logarithm of the exponents is plotted versus

the size of the basis set and extrapolation to smaller basis sets
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.1s performed, _In figure 1 the exponents of the basis functions
for the 2p orbital o;.F— are plotted for several basis set sizes.
It is easily seen that interpolation or extrapolation should be
quite accurate.

Using the above ad hoc rules the polarization functions for
F were chosen. The full basis set is given in Table I as Set I.
These ad hoc rules should be sufficient to compute polarizabilities
to within 10 to 20% accuracy for many ions. To further test the
method of choosing the basis set a second larger basis set was

chosen in a manner similar to that of Billingsley and Krauss

for Carbon.17 This basis is given in Table I as Set II.




IV. Results for F ('S)

In Table II the change in the energy, AE(F), relative to
E(F=0) is given as a function of the field for basis set I.
The energy for the spherically symmetric F_(ls) system is given
by Clementi26 as -99.459363. Using basis set I in the absence
of a field we obtain a lowering of the energy by only 5.&8ZZXIO-6 a.u.
This small change is due to the inclusion of the 2s polarization
function. In Table II the induced dipole moment as a function of
the field is also presented. Due to the use of a single component
of the field Fz'rather than three equal field components Fx = Fy
= Fz a slight quadrupole moment is induced into the system. This
moment - %<w[§(3zi-ri)lw> is given in Table II as a function of

the field as is also the relative value, AX, of the expectation

value of 5N(xi+yi). The polarizability as a function of the field

-

is given by both the expressions (7) and (11). These values are

plotted in Fig. 2. From Table II it can also be seen that the

small quadrupole moment induced in the ion is directly proportional

to Fz with a slight higher order effect present. Thus from Table II

it can be seen that both AX and the magnitude of the quadrupole are
increasing with the field, but the overall changes are very small.

From the plot of the polarizability as a function of the field in

Fig. 2, it can be seen that basis set I gives a static dipole polarizability

of 9.398 a.u. using the induced dipole moment expression and a slightly

larger value 9.402 a.u. using the energy expression.
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In Table III the results are given for the calculation using
basis set II. The polarizability via expressions (7) and (11)
is plotted for basis set II in Fig. 2. The dipole moment
expression, (7), gives a polarizability of 8.804 a.u. while
the energy expression, (11), gives a polarizability slightly
larger 8.810 a.u.
The plots of polarizability wversus the square of the field,
as shown in Fig. 2, show that the limiting value of o is only
slightly different when expressions (7) or (11) are used. Second,
the plot shows especially for basis set II a certain amount of
scatter when the induced dipole moment is used via expression (7)
to determine the polarizability. There seems to be considerably
less scatter when the second order energy is used via expression
(11) for the polarizability. The explanation for this is that the
self-consistent-field algorithm used to determine the wave function
gives a wave function which is self-consistent or precise to an
extent €, while the total energy determined in this method has an

accuracy which goes as the square of the accuracy of the vectors

i.e. as ez. The dipole moment accuracy follows that of the vectors.

These statements can be shown to follow rigorously as a consequence
of the variational method used and as a consequence of Brillouins'
theorem. At a latter stage in the present investigations we intend
to examine this problem of the accuracy of the method and the

applicability of Brillouins'theorem, especially for open shell

atomic systems.
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These results are to be compared with the results of other
calculations for the polarizability of F-(ls) as given in Table 1IV.
The comparison shows that the polarizabilities calculated by the
straightforward CHF procedure via a relatively ad hoc scheme of
choosing the basis set agrees fairly well with the results of other
methods at the same level of accuracy.

This procedure is now being applied to positive and negative
ion states with s or p orbital open shells as well as closed
shell systems. At the present time there is very little work on

open shell systems27 of ionms.
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Accurate electronic energy curves and wave functions of lSTIu
and 152+
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self-consistent-field (MC-SCF) method. The SHu state was predicted
by Mulliken, who suggested it was important in N2 afterglow emissions.
The calculated Re and De of the SHU state is in reasonable accord
with estimates of Carroll and Mulliken based on predissociative
behavior of the C3Hu state.
. S0 S
The vertical transition energy, Hu- Zg, is calculated to be

. about 1.8-1.9 eV. The bound and resonance vibrational structure

of the 52; state are such that the transition would be observable

as bound-like. The calculated transition protability is zero
asymptotically but increases rapidly to shorter distances as the
atoms overlap. At the vertical transition distance the transition |

1

probability is about 2-1055- or a lifetime of 5usec for the ground

vibrational level. |
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Table I. F-(ls) basis set functions(a)

f . Unperturbed atomic functions(b)

n L Exponent

! 1 0 8.9165
1 0 14,7007
2 0 1.8485
2 0 3.2762
2 0 8.0477
2 1 0.9763
2 1 1.4496
2 1 2.0519
2 1 3.9288
2 1 8.2943

‘Polarization functions

Set I Set II
n L Exponent n L Exponent
2 0 0.8243 3 0 1.6500
3 2 1.1540 3 2 0.7500
3 2 2.5990 3 2 1.0500 i
3 2 5.2190 3 2 1.5750 i
3 2 2.4000 |
3 2 3.7500 !
4 3 0.9763 i
4 3 2.0519 i
H

(a) For functions with quantum number 2
greater than zero both o and 7 components
were included.

(b) Hartree-Fock atomic basis taken from
Ref. 26.
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Figure 1.

Figure 2.

List of Figures

Plot of exponents, ;,lof STO's used to represent
the 2p orbital of F~(*S) as a function of basis
set size. Basis functions from Ref. 23.

Plot of a(F), the polarizability as a function of
the square of the applied field. Plot A and B apply
to basis set I, using expressions (7) and (11),
respectively. Plot C and D apply to basis set II,
using expressions (7) and (11), respectively. Units
are atomic units; conversions are given in Table II.
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